
COP 3223: C Programming (Intro To C – Part 1) Page 1 © Dr. Mark J. Llewellyn

COP 3223: C Programming

Spring 2009

Introduction To C - Part 1

School of Electrical Engineering and Computer Science

University of Central Florida

Instructor : Dr. Mark Llewellyn

markl@cs.ucf.edu

HEC 236, 407-823-2790

http://www.cs.ucf.edu/courses/cop3223/spr2009/section1

COP 3223: C Programming (Intro To C – Part 1) Page 2 © Dr. Mark J. Llewellyn

• The C programming language was developed in the
early 1970s by Dennis Ritchie and Ken Thompson in
order to assist in their development of the Unix
operating system.

• Since that time, the C language has been standardized
according to both ANSI (American National Standards
Institute) and ISO (International Standards
Organization) standards. The current mostly widely
used version of C is the ISO standard commonly
referred to as C89.

– The newer standard, known as C99, has not yet been
universally adopted. So when most people refer to “standard
C”, it is the C89 standard that is assumed. It will probably
be some years before all C compilers will be C99 compliant.

Introduction To C

COP 3223: C Programming (Intro To C – Part 1) Page 3 © Dr. Mark J. Llewellyn

• Many modern programming languages
have been influenced by C.

• Java, Perl, C#, and C++, just to mention a
few, have all been heavily influenced by
the C language. Most of these languages
have a syntax which is very C-like, and
include many of the basic commands and
data types that are defined in the C
language.

Introduction To C

COP 3223: C Programming (Intro To C – Part 1) Page 4 © Dr. Mark J. Llewellyn

• C is considered a low-level language. It was primarily
developed to write operating systems which requires many low-
level instructions very close to an assembler language.
(Assembler languages are very low-level languages, just one
step up from machine language. They are cryptic languages but
provide many direct machine level commands and are thus very
efficient languages for low level programming.)

• C is a small language compared to many modern programming
languages. This makes it a nice language to learn as a first
programming language.

• C is a permissive language, which means that C (i.e., the
compiler) assumes that you know what you are doing and allows
you more latitude than many other programming languages.
This is both good and bad, as we will see later. It is good
because you can write working programs without being required
to have extensive error checking , but bad because it is therefore
easier to write incorrect programs.

What Is C?

COP 3223: C Programming (Intro To C – Part 1) Page 5 © Dr. Mark J. Llewellyn

• C is efficient. Since it was primarily developed for applications
where assembly language had been traditionally used, it was
crucial that C programs run quickly and in limited amounts of
memory.

• C is portable. Although portability wasn’t a primary goal of C,
it has turned out to be one of the strengths of the language.
Portability means that the same program can be compiled on
different machines and still run correctly (provide the same
functionality) on any machine on which it is compiled and
executed. The standardization of the language has also
enhanced its portability.

• C is powerful. C contains a large collection of data types and
operators that combine to make the language powerful, meaning
that you can accomplish quite a bit with a relatively small
amount of code (C commands or instructions).

• C is flexible. Although originally designed for systems-level
programming, it can be used for virtually any application.

Strengths of C

COP 3223: C Programming (Intro To C – Part 1) Page 6 © Dr. Mark J. Llewellyn

• C programs can be error-prone. The flexibility of C makes it an
error-prone language. Programming mistakes that would be
caught by many other language compilers will not be detected
by a C compiler. In this respect, C is similar to assembly
language where logic errors will not be detectable until the
program is in execution. As we move through the semester,
we’ll show you ways to make your C programs as “bullet-
proof” as possible and avoid many of the pitfalls that can lead to
errors in C programs.

• C can be difficult to understand. Although C is a small
language, it has many features which are unique to C (features
not found in many/any other programming languages). Many of
these features can be combined in a great number of ways,
which although obvious to the original developer of the code,
may make the code hard to read or understand for others. This
is why following certain standards and conventions can be
helpful, so that anyone can understand your C program.

Weaknesses of C

COP 3223: C Programming (Intro To C – Part 1) Page 7 © Dr. Mark J. Llewellyn

• In this course, we’ll show you how to
effectively use the C language to write
application programs that take advantage of
the strengths of C and minimize its
weaknesses.

• We’ll do this by stressing the use of good
coding conventions (how to write C programs
in a proper style), taking advantage of
existing code libraries, avoiding common
pitfalls that many C programmers make, and
using standard C code.

The Use of C

COP 3223: C Programming (Intro To C – Part 1) Page 8 © Dr. Mark J. Llewellyn

Using Dev C++ (Your First C Program)

• Follow the instructions at
www.cs.ucf.edu/courses/cop3223/spr2009

to download and install the Dev C++ compiler on your
computer.

• Once you’ve done this you’re ready to begin
programming in C.

• As we said earlier, just as you learn natural languages by
starting small and eventually increasing your
vocabulary, so too with programming languages, you
start by writing small programs and master the basics
before you attempt to write more complex programs.

• So let’s write a simple C program that will just print a
message to the user.

http://www.cs.ucf.edu/courses/cop3223/spr2009
http://www.cs.ucf.edu/courses/cop3223/spr2009
http://www.cs.ucf.edu/courses/cop3223/spr2009
http://www.cs.ucf.edu/courses/cop3223/spr2009
http://www.cs.ucf.edu/courses/cop3223/spr2009
http://www.cs.ucf.edu/courses/cop3223/spr2009
http://www.cs.ucf.edu/courses/cop3223/spr2009
http://www.cs.ucf.edu/courses/cop3223/spr2009
http://www.cs.ucf.edu/courses/cop3223/spr2009
http://www.cs.ucf.edu/courses/cop3223/spr2009

COP 3223: C Programming (Intro To C – Part 1) Page 9 © Dr. Mark J. Llewellyn

The initial Dev C++ window

COP 3223: C Programming (Intro To C – Part 1) Page 10 © Dr. Mark J. Llewellyn

1. Click either File or New.

2. Select “Source File”

COP 3223: C Programming (Intro To C – Part 1) Page 11 © Dr. Mark J. Llewellyn

Your “file” currently is named

“Untitled1” – you’ll get to specify a

name when you save the file –

more later.

This is the editing window.

The cursor will be in the

first position in the top row

highlighted in blue. Simply

begin typing your C code

here!

See next page for code.

COP 3223: C Programming (Intro To C – Part 1) Page 12 © Dr. Mark J. Llewellyn

1. // My First C Program

2. // January 12, 2009 Written by: Mark Llewellyn

3. #include <stdio.h>

4. // main function - program execution starts here

5. int main()

6. {

7. printf("Welcome to the C programming language!!\n");

8.

9. system("PAUSE"); //this is for Dev C++ programs only

10. return 0; //program terminates normally

11. } //end main function

Your First C Program
The line numbers are for

discussion purposes

only and are not part of

the program!

COP 3223: C Programming (Intro To C – Part 1) Page 13 © Dr. Mark J. Llewellyn

COP 3223: C Programming (Intro To C – Part 1) Page 14 © Dr. Mark J. Llewellyn

Saving Your First C Program

• Once you’ve entered the code into the editing window,
you need to save your program file.

• Always give your program files meaningful names.

• To save the file, click either the File option and then
select Save or simply select the Save icon from the
menu.

• Be sure to specify that the file type is a “C source file”
as shown on the next screen shot.

• I suggest that you setup a directory where you can
store all of the C programs you write in a single
directory (folder).

COP 3223: C Programming (Intro To C – Part 1) Page 15 © Dr. Mark J. Llewellyn

When you click the Save icon, this

window will appear. Type in the name

you want the file to have here.

From the “save as type” drop down list

select “C source files” as shown.

Then click the Save button

A folder (directory) where all

my C programs reside.

COP 3223: C Programming (Intro To C – Part 1) Page 16 © Dr. Mark J. Llewellyn

Source code file now

known as “program one.c”

COP 3223: C Programming (Intro To C – Part 1) Page 17 © Dr. Mark J. Llewellyn

Compiling and Executing Your Program

• Once you’ve saved your source file (your C program

file), you need to compile the code into the machine

language code that will be executed on your computer.

(Remember that what the compiler does is converts

your source code into machine readable code that is

executable on your machine.)

• Dev C++ provides several different methods for

compiling and executing your C programs. We’ll start

with a fairly simple technique that will compile and

execute your program in a single step. (see next

screen shot.)

COP 3223: C Programming (Intro To C – Part 1) Page 18 © Dr. Mark J. Llewellyn

Click the “compile and run” icon

and you will see a new window

appear with the output (i.e., the

execution results) of your

program appear in the new

window.

COP 3223: C Programming (Intro To C – Part 1) Page 19 © Dr. Mark J. Llewellyn

Congratulations!!! You’ve just

successfully written, compiled

and executing your first C

program!

Go celebrate…but remember to

drink responsibly!!!

COP 3223: C Programming (Intro To C – Part 1) Page 20 © Dr. Mark J. Llewellyn

An alternate way, and typically

easier way to run your C

applications is to switch to the

directory where the compiled

source code is maintained and

simply double click the

application file you want to

execute.

COP 3223: C Programming (Intro To C – Part 1) Page 21 © Dr. Mark J. Llewellyn

A Detailed Look At The Program
• Even though this is a simple C program, it illustrates several

important features of the C language.

• Referring to the line numbers in the code on page 12, lines 1 and 2 are
comments.

• Comments are inserted by the programmer to document the code and
improve its readability.

• Comments are ignored by the C compiler and do not cause the
computer to perform any action when the program is executed (run).
Since the compiler ignores comments, it generates no machine code
for them.

GOOD PROGRAMMING PRACTICE: A common programming convention is to
include comments at the beginning of the source code file that identifies the
name of the program, with perhaps a brief description of the application (what is
its purpose), the date the program was developed and the name of the person
who created the code.

COP 3223: C Programming (Intro To C – Part 1) Page 22 © Dr. Mark J. Llewellyn

A Detailed Look At The Program
• The C99 standard introduced the style of comments used in our first

program.

• This type of comment begins with a double backslash and the comment
continues to the end of the line. Thus each comment must begin with
the double backslash characters.

• The C89 standard as well as all earlier versions of C, used a slightly
different comment form. In this style a comment begins with a /* and
ends with a */.

• The advantage of this older style comment is that you can write a
comment that covers many lines in the file and are not required to place
a comment symbol at the start of each line. The disadvantages are (1) it
makes the program somewhat less readable since long comments do not
really standout from the code, and (2) it is a common programmer error
to forget to place the ending comment delimiter (*/) thus failing to end
the comment and causing compilation or run-time errors.

• Since the newer style comment is now widely incorporated into many
current C compilers, I would suggest using the newer style comment
whenever possible.

COP 3223: C Programming (Intro To C – Part 1) Page 23 © Dr. Mark J. Llewellyn

A Detailed Look At The Program
• Line 3 of the program, #include <stdio.h>, is a

directive to the C preprocessor.

• All lines of code that begin with # are processed by the
preprocessor which is done before the program is
compiled.

• In this case, the line of code tells the preprocessor to
include the contents of the standard input/output header
(stdio.h) in the program.

• This header contains information used by the compiler
when compiling calls to standard input/output library
functions such as printf.

• We’ll look more closely at the contents of headers later
on.

COP 3223: C Programming (Intro To C – Part 1) Page 24 © Dr. Mark J. Llewellyn

A Detailed Look At The Program
• Line 5 of the program, int main(), is a part of every C

program.

• The parentheses after main indicate that main is a
program building block called a function. C programs
contain one or more functions, one of which must be
named main.

• Every program in C begins executing at the function
main.

• The left brace (line 7), {, must begin the body of every
function. A corresponding right brace (line 11) must end
each function.

• This pair of braces and the portion of the code between the
braces is called a block. The block is an important
program unit in C.

COP 3223: C Programming (Intro To C – Part 1) Page 25 © Dr. Mark J. Llewellyn

A Detailed Look At The Program

• Line 7 of the program, printf(…), instructs the
computer to perform an action, namely to print on the
terminal screen (more precisely whatever is the default
standard output, which is typically your screen), the string
of characters marked by the quotation marks inside the
parentheses.

• The entire line, including printf, its argument (the
things inside the parentheses), and the semicolon is called
a statement.

• Every statement must end with a semi-colon in C.

GOOD PROGRAMMING PRACTICE: Each function in your program should be
preceded by a comment that describes the purpose of the function. Sometimes
this comment may also specify ranges of acceptable input values on which the
function will correctly operate.

COP 3223: C Programming (Intro To C – Part 1) Page 26 © Dr. Mark J. Llewellyn

• Notice that the “\n” in the argument did not appear in the output produced by the
program (see screen shot on page 19).

• The “\n” is called an escape character. It indicates that the printf is supposed
to do something out of the ordinary. When encountering a backslash in a string,
the compiler looks ahead at the next character and combines it with the
backslash to form an escape sequence .

• The escape sequence \n means newline. The table below lists some common C
escape sequences.

A Detailed Look At The Program

Escape

Sequence
Description

\n
Newline. Position the cursor at the beginning of the next

line

\t Horizontal tab. Move the cursor to the next tab stop.

\a Alert. Sound the system bell.

\\ Backslash. Insert a backslash character in a string.

\” Double quote. Insert a double quote character in a string.

COP 3223: C Programming (Intro To C – Part 1) Page 27 © Dr. Mark J. Llewellyn

A Detailed Look At The Program
• Line 10 of the program is the last statement in main(),

and is included at the end of every main function.

• The keyword return is one of several ways that we will
use to exit a function.

• When the return statement is used at the end of main,
the value 0 indicates that the program has terminated
successfully.

• When we look at functions more closely later on, the use
of this statement will make more sense. For now, just be
sure to include it at the end of every main function.

GOOD PROGRAMMING PRACTICE: Add a comment to the line containing the
right brace, }, that closes every function, including main. This will again
enhance the readability of your code.

COP 3223: C Programming (Intro To C – Part 1) Page 28 © Dr. Mark J. Llewellyn

Some Practice For You
1. Modify the first C program so that the output appears as

shown below.

2. Modify the first C program so that the output appears as
shown below.

